twitter

Zastosowanie chromatografii micelarnej w analizie substancji przeciwbakteryjnych w  matrycach biologicznych. Application of micellar liquid chromatography in the analysis of antibacterial substances in biological matrices 

Ewelina Patyra1, Carolina Nebot2, Krzysztof Kwiatek1

1Zakład Higieny Pasz, Państwowy Instytut Weterynaryjny w Puławach, Polska

2 Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Medicine, University of Santiago de Compostela, 27002 Lugo, Spain

s. 44-50

Streszczenie. Micelarna chromatografia cieczowa jest jedną z technik wysokosprawnej chromatografii cieczowej. Zastosowanie MLC do analizy dużej liczby związków farmaceutycznych, próbek biologicznych, żywności, próbkach środowiskowych i pasz szybko wzrasta. Technika MLC ma kilka zalet w  porównaniu do innych technik chromatograficznych. Główną jej zaletą jest niewielka ilość używanych modyfikatorów organicznych, takich jak acetonitryl i metanol oraz bezpieczeństwo i możliwość recyklingu fazy ruchomej. W niniejszym artykule dokonano przeglądu możliwości zastosowania micelarnej fazy ruchomej do analizy substancji przeciwbakteryjnych w matrycach biologicznych i paszach.

Słowa kluczowe: micelarna chromatografia cieczowa, zielona chemia, substancje przeciwbakteryjne, matryce biologiczne, pasze, , HPLC – UV, HLC – FLD

Summary. Micellar liquid chromatography (MLC) is a branch of high – performance liquid chromatography.  The applications of MLC for the determination of numerous compounds in pharmaceutical formulation, biological samples, food, enironmental samples and feeds have been growing very rapidly. MLC technique has several advantages over other chromatographic techniques. Its main advantage is the small amount of organic modifiers used such as acetonitrile and methanol and the safty and recyclabity of the mobile phase. In this article presents application method with the use of micellar liquid chromatography for analysis an antibacterial substances in  biological matrices such as milk, eggs, tissues, and feed.

Key words: micellar liquid chromatography, green analytical chemistry, antibacterial substances, biological matrices, feed, HPLC – UV, HLC – FLD

Piśmiennictwo

Rania N. El-Shaheny*, Mahmoud H. El-Maghrabey, and Fathalla F. Belal Micellar Liquid Chromatography  from Green Analysis Perspective

Pyell U., Electrokinetic Chromatography: Theory, Instrumentation and Applications, John Wiley & Sons, Ltd., England, 2006.

Terabe S., Capillary Separation: Micellar Electrokinetic Chromatography, Annu. Rev. Anal. Chem., 2009, 2, 99.

 Pramauro E., Prevot A.B., Detergent Formulations in Separation Science, In: Showell M.S., (Ed.), Handbook of Detergents, Part D: Formulations – Surfactant Science Series, Volume 128, Taylor & Francis Group, LLC, Florida, 2006.

Katarzyna Michocka K., Praca doktorska: Otrzymywanie i właściwości użytkowe nowych surfaktantów z ugrupowaniem cukrowym, Uniwersytet Ekonomiczny w Poznaniu, Wydział Towaroznastwa, Katedra Technologii i analizy Instrumentalnej, Poznań 2012.

Berthod A., García-Alvarez-Coque M.C., Micellar Liquid Chromatography, Marcel Dekker, New York, 2000.

Ruiz"Ángel M.J., García"Álvarez"Coque M.C., Alain Berthod A., New Insights and Recent Developments in Micellar Liquid Chromatography, Sep. Purif. Rev. 2009, 38, 45-96.

García-Álvarez-Coque M.C., Torres-Lapasió J.R., Baeza-Baeza J.J., Modelling of retention behaviour of solutes in micellar liquid chromatography, J. Chromatogr. A., 1997, 780, 129-148.

Ruiz-Angel M.J., Carda-Broch S., Torres-Lapasió J.R., GarcíaAlvarez-Coque M.C., Retention mechanisms in micellar liquid chromatography. J. Chromatogr. A, 2009, 1216, 1798-1814.

Khaledi M.G., Strasters J.K., Rodgers A.H., Breyer E.D., Simultaneous enhancement of separation selectivity and solvent strength in reversed-phase liquid chromatography using micelles in hydro-organic solvents, Anal. Chem., 1990, 62, 130-136.

Ruiz-Angel M.J., Carda-Broch S., García-Alvarez-Coque M.C., Chromatographic efficiency in micellar liquid chromatography: should it be still a topic of concern?, Sep. Purif. Rev., 2013, 42, 1-27

CIR publication, Final report on the safety assessment of sodium lauryl sulfate and ammonium lauryl sulfate, Int. J. Toxicol., 1983, 2, 127–181.

CIR publication, Final report on the safety assessment of cetrimonium chloride, cetrimonium bromide, and steartrimonium chloride, Int. J. Toxicol., 1997, 16, 195-220.

Talmage S.S., Environmental and Human Safety of Major Surfactants: Alcohol Ethoxylates and Alkylphenol Ethoxylates, CRC Press Inc., Florida, 1994. 

Rambla-Alegre M., Basic Principles of MLC, Chromatogr. Research Int., 2012, doi.10.1155/2012/898520

Fernández-Navarro J.J., Ruiz-Ángel M.J., García-Álvarez-Coque M.C., Reversed-phase liquid chromatography without organic solvent for determination of tricyclic antidepressants, J. Sep. Sci., 2012, 35, 1303-1309.

Yadav S.S., Rao J.R., Micellar liquid chromatographic analysis for simultaneous determination of atenolol and hydrochlorothiazide in tablet dosage form, Int. J. Pharm. Pharm. Sci., 2013, 5, 63-67.

Sharma M.C., Sharma S., Kohli D.V., Chaturvedi S.C., Micellar liquid chromatographic  analytical method development and validation of determination of atorvastatin calcium and pioglitazone in tablet dosage form, Der Pharm. Chem., 2010, 2, 273-280.

El-Shaheny R.N., El-Enany N.M., Belal F.F. A green HPLC method for the analysis and stability study of flavoxate HCl using micellar eluent, Anal. Methods, 2014, 6, 1001-1010.

El-Wasseef D.R., Simultaneous Determination of Metformin, Nateglinide and Gliclazide in Pharmaceutical Preparations Using Micellar Liquid Chromatography, Int. J. Biomed. Sci., 2012, 8, 144-151.

Sharma M.C., Sharma S., Micellar liquid chromatographic method development for determination and stability indicating of nelfinavir mesylate in pharmaceutical formulation, Int. J. Pharm Tech. Res., 2011, 3, 248-252.

23.El-Shaheny R.N., Stability-indicating micellar LC methods with time-programmed UV detection for determination of three oxicams in pharmaceuticals with direct injection of gel and suppositories, J. Liq. Chromatogr. Related Technol., 2015, 38, 163-171.

Donga Y.M., Lia N., Ana Q., Lu N.W., A Novel nonionic micellar liquid chromatographic method for simultaneous determination of pseudoephedrine, paracetamol, and chlorpheniramine in cold compound preparations, J. Liq. Chromatogr. Related Technol., 2015, 38, 251-258.

Walash M.I., Metwally M., Eid M., El-Shaheny R., Development and validation of a micellar highperformance liquid chromatographic method for determination of risedronate in raw material and in a pharmaceutical formulation: application to stability studies, J. AOAC. Int., 2010, 93, 1228-1235.

Jaipang S., Santiarworn D., Liawruangrath S., Liawruangrath B., Micellar liquid chromatographic determination of sildenafil citrate in pharmaceutical formulations, 2013, Chiang Mai J. Sci., 2013, 40, 408-418.

Peris-Vicente J., Carda-Broch S., Esteve-Romero J., Quantification of tamoxifen in pharmaceutical formulations using micellar liquid chromatography, Anal. Sci., 2014, 30, 925-930.

Mishra R., Ashtputre P., Matkar S., Malvia H., Khan M.A., Pare A., Micellar liquid chromatographic method development for determination of 2,4,5,6-tetraamino pyrimidine sulphate salt, Asian J. Pharm. Life Sci., 2011, 1, 58-63.

Rizk M.S., Merey H.A., Tawakkol Sh.M., Sweilam M.N., Development and validation of a stability-indicating micellar liquid chromatographic method for the determination of timolol maleate in the presence of its degradation products, J. Chromatogr. Sci., 2015, 53, 503-510.

Sharma S., Sharma M.C., Kohli D.V., Conventional and micellar liquid Chromatography Method with Validation for torsemide and spironolactone in tablet combined dosage form, Der Pharm. Lett., 2010, 2, 374-381.

Armstrong D.W., Hinze W.L., Bui K.H., Singh N.H. Enhanced fluorescence and room temperature liquid phosprorescence detection in pseudophase liquid chromatography (PLC), Anal. Lett. 1981, 14, 1659-1667.

Hadjmohammadi M.R., Fatemi M.H., Separation and improvement in detection of polycyclic aromatic hydrocarbons by reverse-phase high performance liquid chromatography using micellar mobile phase and fluorescence detector, J. Liq. Chromatogr., 1995, 18, 2569-2578.

Stępnik K..E., A concise review of applications of micellar liquid chromatography to study biologically active compounds. Biomed. Chrom. 2016, DOI 10.1002/bmc.3741.

 Ibrahim F.A., Nasr J.J., Direct determination of ampicillin and amoxicillin residues in food samples after aqueous SDS extraction by micellar liquid chromatography with UV detection, Anal. Methods, 2014, 6, 1523-1529.

Nasr J.J., Shalan Sh., Belal F., Determination of carbadox and olaquindox residues in chicken muscles, chicken Liver, bovine meat, liver and milk by MLC with UV detection: Application to baby formulae, Chromatographia, 2013, 76, 523-528.

Patyra E., Kowalczyk E., Kwiatek K.: Development and validation method for the determination of selected tetracyclines in animal medicated feedingstuffs with the use of micellar liquid chromatography, Anal. Bioanal. Chem, 2013, 405(21), 6799 – 6809.

Rambla-Alegre M., Collado-Sánchez M.A., Esteve-Romero J., Carda-Broch S., Quinolones control in milk and eggs samples by liquid chromatography using a surfactant-mediated mobile phase, Anal. Bioanal. Chem., 2011, 400, 1303-1313.

 Chin-Chen M.L.,Rambla-Alegre M., Carda-Broch S., EsteveRomero J., Peris-Vicente J., Micellar liquid chromatography determination of spermine in fish sauce after derivatization with 3,5-dinitrobenzoyl chloride,  Chromatogr. Res. Int., 2012, http:// dx.doi.org/10.1155/2012/421909. 

Yang S., Khaledi M.G.: Micellar liquid chromatographic separation of sulfonamides in physiological samples using direct column-injection. J. Chromatogr. A, 1995, 692, 311 – 318.

 Caballero R.D., Torre-Lapasio R., Garcia-Alvarez-Coque M., Ramis Ramos G.: Rapid liquid determination of tetracyclines in animal feeds using a surfactant solution as mobile phase, AnalLett, 2009, 35:687–705.

Rambla – Alegre A., Peris – Vicente J., Estevo – Romero J., Carda – Broch S., Analysis of selected veterinary antibiotics in fish by micellar liquid chromatography with fluorescence detection and validation accordance with regulation 2002/657/EC, Food Chem, 2010, 123(4), 1294 – 1302.

Rambla-Alegre M., Collado-Sánchez M.A., Esteve-Romero J., Carda-Broch S., Quinolones control in milk and eggs samples by liquid chromatography using a surfactant-mediated mobile phase, Anal. Bioanal. Chem., 2011, 400, 1303-1313.

Thomas O.R.T., White G.F., Metabolic pathway for the biodegradation of sodium dodecyl sulphate by Pseudomonas sp-c12b, Biotechnol. Appl. Biochem., 1989, 11, 318-327.

Scott M.T., Jones M.N., The biodegradation of surfactants in the environment, Biochim. Biophys. Acta., 2000, 1508, 235-251.

Kravetz L., Salanitro J.P., Dorn P.B., Guin K.F., Influence of hydrophobe type and extent of branching on environmental response factors of non-ionic surfactants, J. Am. Oil. Chem. Soc., 1991, 68, 610-618.

Nishiyama N., Toshima Y., Ikeda Y., Biodegradation of alkyltrimethylammonium salts in activated sludge, Chemosphere, 1995, 30, 593-603.

Takenaka S., Tonoki T., Taira K., Murakami S., Aoki K., Adaptation of Pseudomonas sp. strain 7-6 to quaternary ammonium compounds and their degradation via dual pathways, Appl. Environ. Microbiol, 2007, 73, 1797-1802.