twitter

Jakość pasz dla zwierząt laboratoryjnych jako czynnik otrzymanych wyników badań

s. 67-72

Lidia Radko, Sylwia Stypuła-Trębas, Andrzej Posyniak

Zakład Farmakologii i Toksykologii, Państwowy Instytut Weterynaryjny-Państwowy Instytut Badawczy

Streszczenie. Zachowanie odpowiednich warunków hodowlanych stanowi podstawowy element warunkujący uzyskanie istotnych wyników badań. Żywienie jest jednym z czynników środowiskowych wpływających nie tylko na wyniki hodowlane i zdrowotne zwierząt laboratoryjnych, ale także na ich jakość jako modelu, a w konsekwencji na wyniki prowadzonych badań. Prawidłowe żywienie polega na zaspokajaniu potrzeb pokarmowych w sposób pozwalający na przebieg procesów fizjologicznych na stałym poziomie oraz nie powoduje wystąpienia zmian patologicznych w czasie hodowli oraz eksperymentu. W ostatnich latach hodowcy zwierząt laboratoryjnych zauważyli wzrost występowania nowotworów u szczurów oraz zaburzeń w rozrodzie zwierząt. Szczególną uwagę zwrócili na jakość dostarczanych pasz laboratoryjnych, w tym na obecność zanieczyszczeń chemicznych. Przeprowadzone badania wykazały obecność: pestycydów (m.in. glifosat, pirimifos), metali ciężkich (m.in. ołowiu i kadmu) oraz dioksyn i mikotoksyn (m.in. eniatyn, zeralenonu, deoksyniwalenolu, fumonizyn, aflatoksyny). Stwierdzane stężenia ww. zanieczyszczeń były niskie w stosunku do określonych pozostałości dla zwierząt gospodarskich. Jednakże, przewlekłe narażenie zwierząt laboratoryjnych na niskie stężenia mieszaniny stwierdzanych zanieczyszczeń, prowadzi do pogorszenia wyników hodowli i w związku z tym uzyskiwania fałszywych wyników badań, zwiększenia liczby wykorzystanych zwierząt w doświadczeniach oraz większej trudności w ekstrapolacji wyników na człowieka. Dlatego zastosowanie urzędowej kontroli jakości pasz dla zwierząt laboratoryjnych, która nie jest prowadzona, poprawi jakość (powtarzalność i odtwarzalność) uzyskiwanych wyników doświadczeń na zwierzętach laboratoryjnych. 

Słowa kluczowe: zwierzęta laboratoryjne, pasze, zanieczyszczenie, eksperyment

 

The quality of laboratory rodent feed as a factor of the obtained test results

Lidia Radko, Sylwia Stypuła-Trębas, Andrzej Posyniak

Department of Pharmacology and Toxicology,

National Veterinary Research Institute, 24-100 Pulawy, Poland

 

Summary. The maintaining appropriate breeding conditions is a basic element providing the achievement of reliable research results. The nutrition is one of the environmental factors affecting not only the breeding and health results of laboratory animals, but also their quality as a model and, consequently, the results of experiment. The proper nutrition consists in satisfying nutritional needs in a way that allows physiological processes to run at a constant level and does not cause pathological changes during breeding and experiment. In recent years, laboratory animal breeders have noticed an increase in the incidence of spontaneous tumors in rats and disturbances in the reproduction of this animals. The particular attention was paid to the quality of laboratory feeds, including the presence of chemical contaminants. The research carried out showed the presence of pesticides (including glyphosate, pirimiphos), heavy metals (lead and cadmium) as well as dioxins and mycotoxins (eniatins, zeralenone, deoxynivalenol, fumonisins, aflatoxins).The established concentrations of the above impurities were low in relation to certain residues for livestock. However, chronic exposure of laboratory animals to low levels of the mixture of contaminations leads to deterioration of breeding results and, consequently, obtaining false test results, increasing the number of animals used in experiments and greater difficulty in extrapolating outcomes to humans. Therefore, the use of official quality control of laboratory feeds that is not carried out will improve the quality (repeatability and reproducibility) of the results obtained in experiments on laboratory animals.

Key words: laboratory animals, feed, contaminations, experiment

Piśmiennictwo:

  1. Almeida I., Martins H.M., Marques M.F.: Mycobiota and Ochratoxin A in laboratory mice feed: preliminary study. Vet. Res. Commun.2010, 34, 381–386.
  2. Anway M.D., Cupp A.S., Uzumcu M, Skinner M.K.: Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science, 2005, 308, 1466–1469.
  3. Bhat R., Rai R.V., Karim A.A.: Mycotoxins in food and feed: present status and future concerns. Compr Rev Food Sci F, 2010,  9, 57–81.
  4. Brix A., Nyska A., Haseman J., Sells D., Jokinen M. Incidences of selected lesions in control female Harlan Sprague-Dawley rats from two-year studies performed by the National Toxicology Program. Toxicol Pathol.2005, 33, 477–483.
  5. Cabello G., Valenzuela M., Vilaxa A., Duran V., Rudolph I.) A rat mammary tumor model induced by the organophosphorous pesticides parathion and malathion, possibly through acetylcholinesterase inhibition. Environ Health Perspect. 2001,109, 471–479.
  6. Cheli F., Campagnoli A., Dell’Orto V.: Fungal populations and mycotoxins in silages: from occurrence to analysis. Anim Feed Sci Technol 2013, 183, 1–16.
  7. Dyrektywa 2002/32/WE Parlamentu Europejskiego i Rady z dnia 7 maja 2002 r. w sprawie niepożądanych substancji w paszach zwierzęcych. L140/10
  8. EPA (2002) Reregistration Eligibility Decision (RED): Pirimiphos-methyl. Report Number: EPA/738/R-01/004.
  9. Escrivá L., Font G., Berrada H., Manyes L.: Mycotoxin contamination in laboratory rat feeds and their implications in animal research. Toxicol. Mech. Methods, 2016, 26, 529-537.
  10. Escrivá L., Font G., Berrada H., Manyes L.: Mycotoxin contamination in laboratory rat feeds and their implications in animal research. Toxicol Mech Methods. 2016, 26, 529-537.
  11. Escriva L., Manyes L., Font G., Berrada H.: Analysis of trichothecenes in laboratory rat feed by gas chromatography-tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2016, 33, 329–338.
  12. Fernandez-Gonzalez R., Yebra-Pimentel I., Martinez-Carballo E., Simal-Gandara J.: A critical review about the human exposure to polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) through foods. Crit Rev Food Sci Nutr. 2015, 55, 1590-1617. 
  13. Giknis M.L.A., Clifford C.B.: Compilation of spontaneous neoplastic lesions and survival in Crl:CD (SD) rats from control groups. Charles River Laboratories, 2004.
  14. Giknis M.L.A., Clifford C.B.: Neoplastic and Non-Neoplastic Lesions in the Charles River Wistar Hannover [Crl:WI(Han)] Rat. Charles River Laboratories. 2011.
  15. Gonzalez M.L., Dogi C., Torres A.: Genotoxicity and cytotoxicity evaluation of probiotic Saccharomyces cerevisiae RC016: a 60-day subchronic oral toxicity study in rats. J Appl Microbiol. 2014, 117, 824–33.
  16. Grenier B., Oswald I.P. Mycotoxin co-contamination of food and feed: meta-analysis of publications describing toxicological interactions. World Mycotoxin J. 2011, 4, 285–313.
  17. Gronowska-Senger A.: Podstawy biooceny żywności, Wyd. SGGW, Warszawa 2004.
  18. Guerra M, Martins HM, Ferreira S, et al. (2007). Screening of aflatoxin B1 in laboratory rat feed. Scand J Lab Anim Sci 34:109–113.
  19. Heinemann J.A., Massaro M., Coray D.S., Agapito-Tenfen S.Z., Wen J.D.: Sustainability and innovation in staple crop production in the US Midwest. Int J Agr Sustain, 2013, 1–18.
  20. International Council for Laboratory Animal Science. 1987. ICLAS Guidelines on the Selection and Formulation of Diets for Animals in Biomedical Research, M. E. Coates, editor. London.
  21. Jensen M.N., Ritskes-Hoitinga M.: How isoflavone levels in common rodent diets can interfere with the value of animal models and with experimental results. Lab Anim. 2007, 41,1-18.
  22. Jeong S.H., Kim B.Y., Kang H.G., Ku H.O., Cho J.H.: Effect of chlorpyrifos-methyl on steroid and thyroid hormones in rat F0- and F1-generations. Toxicology 2006,  220, 189–202.
  23. Jobling S., Burn R.W., Thorpe K., Williams R., Tyler C.: Statistical modeling suggests that antiandrogens in effluents fromwastewater treatment works contribute to widespread sexual disruption in fish living in English rivers. Environ Health Perspect. 2009, 117, 797–802.
  24. Kouadio J.H., Moukha S., Brou K., Gnakri D.: Lipid metabolism disorders, lymphocytes cells death, and renal toxicity induced by very low levels of deoxynivalenol and fumonisin B1 alone or in combination following 7 days oral administration to mice. Toxicol Int 2013, 20, 218–223.
  25. Kozul C.D., Nomikos A.P., Hampton T.H., Warnke L.A., Gosse J.A.: Laboratory diet profoundly alters gene expression and confounds genomic analysis in mouse liver and lung. Chem Biol Interact. 2008, 173, 129–140.
  26. Lauridsen C., Chen Y., Halekoh U., Bugel S.H., Brandt K.: Rats show differences in some biomarkers of health when eating diets based on ingredients produced with three different cultivation strategies. J Sci Food Agr. 2008, 88, 720–732.
  27. Lazarini C.A., Florio J.C., Lemonica I.P., Bernardi M.M.: Effects of prenatal exposure to deltamethrin on forced swimming behavior, motor activity, and striatal dopamine levels in male and female rats. Neurotoxicol Teratol. 2001, 23, 665–673.
  28. Manikkam M., Tracey R., Guerrero-Bosagna C., Skinner M.K.: Dioxin (TCDD) induces epigenetic transgenerational inheritance of adult onset disease and sperm epimutations. PLoS One. 2012, 7, e46249.
  29. Martin B., Ji S., Maudsley S., Mattson M.P.: "Control" laboratory rodents are metabolically morbid: why it matters. Proc Natl Acad Sci U S A. 2010,  107, 6127–6133.
  30. Mercurio P., Flores F., Mueller J.F., Carter S., Negri A.P.: Glyphosate persistence in seawater. Mar Pollut Bull. 2014,85,385–390.
  31. Mesnage R., Defarge N., Rocque L.M., Spiroux de Vendômois J., Séralini G.E.: Laboratory Rodent Diets Contain Toxic Levels of Environmental Contaminants: Implications for Regulatory Tests. PLoS One. 2015,10, e0128429.
  32. Minta M., Radko L., Stypuła-Trębas S., Woźniak B, Żmudzki J. Influence of dietary soy isoflavones on immature hamster uterotrophic and Hershberger assays. Bull Vet Inst Pulawy, 2013, 57, 579-585.
  33. Mishra S., Dwivedi P.D., Pandey H.P., Das M.: Role of oxidative stress in deoxynivalenol induced toxicity. Food Chem Toxicol. 2014, 72, 20–29.
  34. Mostafalou S., Abdollahi M.: Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol. 2013, 268, 157–177.
  35. Newberne P.M.: Influence of pharmacological experiments of chemicals and other factors in diets of laboratory animals. Fed Proc. 1975, 34, 209–218.
  36. Nishi K., Hundal S.S.: Chlorpyrifos induced toxicity in reproductive organs of female Wistar rats. Food Chem Toxicol. 2013, 62, 732–738.
  37. Nougadere A., Reninger J.C., Volatier J.L., Leblanc J.C.: Chronic dietary risk characterization for pesticide residues: a ranking and scoring method integrating agricultural uses and food contamination data. Food Chem Toxicol. 2011, 49, 1484–1510.
  38. Rao G.N., Knapka J.J.: Contaminant and nutrient concentrations of natural ingredient rat and mouse diet used in chemical toxicology studies. Fundam Appl Toxicol. 1987, 9, 329–338.
  39. Ronchetti S.A., Miler E.A., Duvilanski B.H., Cabilla J.P.: Cadmium mimics estrogen-driven cell proliferation and prolactin secretion from anterior pituitary cells. PLoS One 2013, 8, e81101.
  40. Sanders A.P., Smeester L., Rojas D., DeBussycher T., Wu M.C.: Cadmium exposure and the epigenome: Exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics. 2014, 9, 212–221.
  41. Schecter A., Olson J., Papke O.: Exposure of laboratory animals to polychlorinated dibenzodioxins and polychlorinated dibenzofurans from commercial rodent chow. Chemosphere 1996, 32, 501–508.
  42. Shukla Y., Arora A., Singh A.: Tumourigenic studies on deltamethrin in Swiss albino mice. Toxicology 2001, 163, 1–9.
  43. Singh S.B., Mukherjee I., Maisnam J., Kumar P., Gopal M.: Determination of pesticide residues in integrated pest management and nonintegrated pest management samples of apple (Malus pumila Mill.). J Agric Food Chem. 2009, 57, 11277–11283.
  44. Tennekes H., Gembardt C., Dammann M., van Ravenzwaay B.: The stability of historical control data for common neoplasms in laboratory rats: adrenal gland (medulla), mammary gland, liver, endocrine pancreas, and pituitary gland. Regul Toxicol Pharmacol. 2004,  40, 18–27.
  45. Thayer K.A., Heindel J.J., Bucher J.R., Gallo M.A.: Role of environmental chemicals in diabetes and obesity: a National Toxicology Program workshop review. Environ Health Perspect. 2012, 120, 779–789.
  46. Thongprakaisang S., Thiantanawat A., Rangkadilok N., Suriyo T., Satayavivad J.: Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem Toxicol. 2013, 59C, 129–136.
  47. Ustawa z dnia 15 stycznia 2015 r. o ochronie zwierząt wykorzystywanych do celów naukowych lub dydaktycznych.
  48. Vandenberg L.N., Colborn T., Hayes T.B., Heindel J.J., Jacobs D.R. Jr.: Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev. 2012, 33, 378–455.
  49. Waldemarson A.H., Hedenqvist P., Salomonsson A.C., H€aggblom P.: Mycotoxins in laboratory rodent feed. Lab Anim. 2005, 39, 230–235.
  50. Zalecenie Komisji z dnia 17 sierpnia 2006 w sprawie obecności deoksyniwalenolu, zearalenonu, ochratoksyny A, T-2 i HT-2 oraz fumonizyn w produktach przeznaczonych do żywienia zwierząt. Dziennik Urzędowy Komisji Europejskiej L 229/7.
  51. Zalecenie Komisji z dnia 27 marca 2013 w sprawie obecności T-2 i HT-2 w zbożach i produktach zbożowych. Dziennik Urzędowy Komisji Europejskiej L 91/12.
  52. Zeljenkova D., Ambrusova K., Bartusova M., Kebis A., Kovriznych J.: Ninety-day oral toxicity studies on two genetically modified maize MON810 varieties in Wistar Han RCC rats (EU 7th Framework Programme project GRACE). Arch Toxicol. 2014, 88,2289-314.